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KEY POINTS

¢ Infection with a pathogen does not always result in disease, but infectious diseases are
the outcome of interactions among 3 factors: host, pathogen, and environment. Several
layers of sophisticated interactions between host and pathogens have been a major
limiting factor in decoding and identifying the genetic rules of disease resistance.

Different research groups have used different strategies to dissect this complex network
and to understand the genetic rules of diseases resistance. These strategies can be
grouped based on the genetic information examined (eg, candidate genes, pedigree-
based genetic information, and genome-wide studies) and the phenotypic information
available (eg, single-disease, immunocompetence, and reductionist models).

e Recent technological advances are helping researchers to generate big data sets of the
host-pathogen-environment interactions. Nonetheless, defining the relevant phenotypes
seems to be the main challenge to reveal the genetic blueprint of disease resistance.

The possibility of negative genetic correlations in resistance to 2 pathogens (eg, intracel-
lular vs extracellular organisms), even those causing the same disease (eg, the many
diverse organisms causing bovine mastitis or pneumonia), or negative associations be-
tween resistance to a pathogen with important production traits, are other challenges to
the single-disease approach, as well as other approaches to selecting for health.
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Continued

e An alternative method to scrutinize these complex interactions is to simplify the main inter-
action network into subsystems that can be examined in detail using in vitro methods. In
any subsystems, the genetic control requires the contribution of a smaller number of
genes, which may simplify the genetic pathways examined. Although reductionist models
can reveal potential genes and pathways important for further examination to host de-
fense, they may not fully reflect the intricacies of in vivo disease resistance.

INTRODUCTION

During disease outbreaks, some individuals in a population are more resistant to
infection than others. Resistant individuals may survive, whereas others in the pop-
ulation may die or have less severe signs of disease, or may completely eliminate
the infection without showing clinical signs of disease. Infection with a pathogen
does not always result in disease, but, when it does, infectious diseases are the
outcome of interactions among 3 factors: host, pathogen, and environment.'=®
Each of these factors has been examined in many studies that aimed to reduce
the occurrence (increase resistance or resilience) or soften the impact of infection
on the host (increase tolerance) (Box 1). Among the factors mentioned earlier, the
host (or specifically the host immune system) has gained tremendous recognition
because of its direct role in protecting the host against pathogens and also the pos-
sibility of genetic improvement of this system. However, several layers of sophisti-
cated interactions between host and pathogens have been a major limiting factor in
decoding and identifying the genetic rules of disease resistance.* The first layer is
the functional complexity of the immune system. The immune system is an intricate
network of cells and molecules that applies various strategies to protect the host
against a broad range of pathogens.®® These strategies range from nonspecific
physical barriers to specific cytotoxic activity of lymphocytes. Innate defenses clas-
sically initiate immune responses; adaptive immune responses follow if innate
mechanisms are not successful to eliminate the pathogen. Cells of the innate

Box 1
Resistance, resilience, and tolerance

These terms have varied definitions in the literature, but, for the purpose of this article, the
following definitions are applied. Disease resistance is defined as the ability of the host to con-
trol the infection passively (eg, absence of a target receptor) or actively (ie, mounting the pro-
tective immune responses).® The resistant animals can clear the pathogen, entirely. Resilience is
the ability of the host to recover after a disease.’** Resistance and resilience are closely related
but not interchangeable. Resilience is always an active phenomenon, whereas resistance could
be passive because of the absence of the target receptor. Resilience can also be defined
through the overall performance of the host in the face of general environmental challenges,
not only in the face of disease. These challenges include, but are not limited to, weaning,
handling, moving to a new feedlot, and disease. Livestock may cope with these challenges
via physiologic, behavioral, and also immune responses. Various studies have shown that the
performance of immune response at the time of challenge can be a good indicator of the over-
all resilience of the animal in future.*® The current livestock management practices make it
possible to measure all components of resilience to predict the overall performance in future.
Tolerance is the ability of the host to cope with the presence of the pathogen. Tolerant animals
can maintain their production in the face of pathogenic infection.”
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immune system mainly recognize microbe-associated molecular patterns via path-
ogen recognition receptors. Following recognition, they attempt to destroy the
pathogen, which is followed by sending activating signals to the adaptive immune
system. Cells of the adaptive immune system generate pathogen-specific re-
sponses. Although immune responses generally follow the pathways mentioned
earlier, multifunctionality of cells and molecules, numerous subpopulations of cells,
redundancy in responses, and various exceptions to the general rules are a few ex-
amples that increase the complexity of immune system.*” For instance, v5 T cells,
a subpopulation of T cells, belong to the adaptive immune system but can also act
like cells of innate defense. These cells are prominent (50%-60% of lymphocytes)
in circulating blood in the early life in ruminants, but their population decreases with
age (5%-25% of circulating T lymphocytes). Nonetheless, the percentage of vd
T cells among lymphocytes, even in adult ruminants, is higher than in humans
and mice (1%-5%). These cells originate from lymphocyte progenitors but are
not antigen (Ag) specific and do not need to recognize Ags in the context of major
histocompatibility complex (MHC) molecules. Bovine y3 T cells have both inflam-
matory and regulatory activities. Cattle yd T cells respond within a few hours of viral
infection (similar to innate responses) by producing large amounts of interferon-y
(IFN-v; a proinflammatory cytokine) or interleukin (IL)-10 (a regulatory cytokine)
following exposure to antigen-presenting cells.®° The proportion and functional ca-
pacity of these cells show individual variation among cattle genetically selected for
immune responsiveness.'°

Another layer of immunologic complexity relates to the genetic control of immune
responses. Approximately, 20% of the bovine genome (ARS-UCD1.2, ENSEMBL
95) is annotated with the immune response.'! This portion is composed of 5369
genes that are directly involved in mounting immune responses. High-throughput
technologies have shown expression of up to 71.4% of the bovine genome in
one cell type, the macrophage, after exposure to a pathogen. Compared with the
unchallenged control, approximately 245 to 574 genes are differentially
expressed.'? Given the possible nonadditive effects (epistatic and dominance)
and epigenetic mechanisms, the genetic control of immune response is astonish-
ingly complex.

A third layer of genetic complexity is caused by the pathogen evolving during an
infection. For instance, viral pathogens are well known to escape the immune
response through genetic mutations (eg, antigenic shift and drift in influenza viruses)
or stabilize themselves in the host via inserting their genome in the host genome,
(eg, bovine leukemia virus). This phenomenon potentially results in multistrain infection
in 1 host or 1 population during an outbreak.

In this article, recent advances in genetic and epigenetic regulation of immunocom-
petence and disease resistance in domesticated ruminants are discussed. Moreover,
because of the importance of climate change, recent studies of gene-by-environment
effects on the regulation of host defense are also discussed.

GENETIC REGULATION OF IMMUNOCOMPETENCE AND DISEASE RESISTANCE

Recent technological advances have helped researchers to generate big data sets of
the host-pathogen-environment interactions. Nonetheless, defining the relevant phe-
notypes seems to be the main challenge in revealing the genetic blueprint of disease
resistance.'®'* Various research groups have used different strategies to dissect this
complex network and to understand the genetic rules of diseases resistance. These
strategies can be grouped based on the genetic information (candidate genes,
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pedigree-based, and genome-wide studies) and the phenotypic information (single-
disease, immunocompetence, and reductionist models) (Table 1). The advantages
and pitfalls of each strategy are discussed here.

Source of Genetic Information: Candidate Gene, Genome-Wide, or Pedigree

The main difference between a candidate-gene versus a genome-wide approach is
the goal of the study: the candidate gene approach is hypothesis driven, whereas
the genome-wide approach is discovery based. The hypothesis in the candidate-
gene approach is based on a previously established biological link or association be-
tween the candidate gene and the health trait. In most cases, the candidate gene has a
strong biological and well-defined role in the pathway of pathogenesis or the protec-
tive immune response. However, this information, which is the basis of the new hy-
pothesis on the gene of interest, has usually been proved in other species or the
magnitude of its effect has not been measured on the specific disease (type | studies)
or immune response (type Il studies) (see Table 1).

Genes of the MHC are arguably the most studied health trait genes in ruminants, as
well as other species. One of the first reports of an MHC polymorphism and its asso-
ciation with immune response was from a study in guinea pigs published in 1975.%°
The genetic polymorphism within the bovine MHC known as the bovine lymphocyte
antigen (BoLA) system was first reported in 1979."® Since then, the association of
BoLA with many infectious and metabolic diseases, as well as characteristics of im-
munity, has been the subject of numerous studies.'’~2° Despite the extensive studies
on BolA, the findings have rarely been commercially used in breeding programs
because of the inverse association with different pathogens and between types of im-
mune responses.’> An exception was specific BoLA DRB-3 and DQB alleles being
used to reduce bovine dermatophilosis from 0.76 to 0.02 in Brahman-Zebu cattle
on the island of Martinique.?* This approach worked well because the disease was
highly prevalent in a well-contained population of cattle.

The genome-wide association and pedigree-based studies are descriptive studies
designed to discover novel associations (type V and VI studies) or to estimate
breeding values for individuals in the population (type Ill and IV studies) (see
Table 1). The genome-wide genetic information can be combined with pedigree infor-
mation to increase the reliability of breeding value estimates by accounting for poly-
gene effects. These estimates are known as genomic breeding values,?® which are
currently being used by breeding companies, such as the Semex Alliance, to improve
accuracy of selection for various traits, including for Immunity+. However, the findings
of genome-wide association studies should be validated (eg, using candidate gene
studies), and the findings of pedigree-based studies only hold within the population

Table 1
Classification of studies on genetic control of immune response and resistance to infectious
disease based on genetic and phenotypic information

Genetic Polymorphism

Candidate Genome-
Gene Pedigree wide
Phenotype Single Disease Type | Type Il Type V
Immunocompetence Type Il Type IV Type VI

The pedigree information can be used alone, or it can be added to the genome-wide study to ac-
count for polygenic effects. The pedigree information can also be used to select samples in candi-
date gene approaches to maximize the diversity of the samples.
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or the breed of the studied population, depending on the structure of the sample
population.?®

In genetic association studies, single nucleotide polymorphisms (SNPs) have been
the primary source of genetic information used to identify variation between individ-
uals. Over the past decade, technological advances in sequencing and bioinformatics
have provided other sources of genetic information, mainly structural polymorphisms
at the genomic, epigenomic, and transcriptomic levels (Box 2).2” These structural var-
iants are novel and remain expensive to detect. Therefore, the studies on ruminants
using structural polymorphism are limited. Copy number variation (CNV) and splicing
variants are two types of novel polymorphisms that have been reported in cattle, water
buffalo, sheep, and goat.?®3" Studies on the association of the structural variants
mentioned earlier with health traits in ruminants are rare. However, there is a limited
number of reports on the association of CNVs with bovine clinical mastitis, somatic
cell score, and resistance to gastrointestinal nematodes in cattle and resistance to
retroviral infection in sheep.®?~2° The methods to detect structural variants and the
challenges in their application in breeding have been reviewed by Bickhart and Liu.*®

Source of Phenotypic Information: Single Disease or Inmunocompetence

In the single-disease approach, the goal is to identify alleles (type | studies) or to es-
timate genetic variance components (type Ill and V studies) by comparing animals
classified as resistant, resilient, or tolerant to a disease or syndrome following infection
(natural or experimental challenge) with animals classified as susceptible. Any type of
investigation of the genetic regulation of immune response and disease resistance
needs a large sample size. The sample size required to achieve adequate statistical
power can be ambiguously estimated using the predicted number of quantitative trait
loci (QTLs) that control the trait, minor allele frequency of QTLs, the threshold to detect
QTL effects, effective population size, and estimated environmental effects.3”-38
Although environmental effects can be controlled or removed in experimental chal-
lenges, this type of study in large ruminants (ie, to investigate the genetic control of
disease resistance) is less feasible because of the space needed for the containment
facility and the high cost to study a large sample population. These limitations have led
some researchers to choose case-control studies following natural infection as the
most feasible approach to study the genetic control of health traits in ruminants.®®
The most critical step in case-control studies is to accurately define the phenotype
and assign the samples to the appropriate class. During natural infections, the time
of occurrence of the infection, the dose of infection, and any prior exposure to the
pathogen are often unknown factors. Therefore, animals might be classified

Box 2
Novel sources of genetic variation

Copy number variation (CNV). CNV is a type of structural variation defined as a segment of DNA
(more than 1 kb) with more than 1 copy in the genome. These segments have undergone inver-
sion, deletion, or duplication mutations, but the sequences of these segments are very similar
to each other. These segments are called copy number polymorphism when their frequency in
the population is more than 1%.'%*

Spicing variants. During messenger RNA (mRNA) maturation, intron segments are removed
from pre-mRNA, and exons are joined together. Through this process, alternative combination
of exons and residues of introns can result in different variants of a mature mRNA, called

splicing variants. The association of splicing variants and mastitis has been reported in cat-
tle.146'147
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incorrectly. For instance, one individual might be classified as resistant but was not
exposed to the pathogen, or the animal might have been previously exposed and
developed immunologic memory. These types of errors can potentially introduce
prominent experimental “noise,” resulting in an inability to detect QTLs with small ef-
fects or rare alleles. However, when the mortality of a disease is very high (eg, highly
pathogenetic avian influenza) or the genetic defect is lethal (eg, bovine leukocyte
adhesion deficiency [BLAD]) the study noise does not obscure identifying cases and
controls. Therefore, identification of genetic regulation at the level of causal mutation
is feasible. For instance, BLAD was found to be caused by a mutation on the cluster of
differentiation (CD) 18 gene that encodes an adhesion molecule (82 integrin) on the
leukocytes surface causing major defect in phagocytosis, chemotactic response,
and other normal functions of neutrophils.*® In investigating the genetic regulation
of diseases with lower mortality or morbidity rate, the study noise must be carefully
considered in case-control studies and modified designs are being proposed for com-
plex diseases, such as bovine mastitis.*'

Genetic regulation of resistance to complex diseases, such as clinical and subclin-
ical mastitis, Johne disease, lameness, calf diarrhea, bovine leukosis, bovine tubercu-
losis, and helminth infestations, are the subject of numerous investigations by using
the single-disease approach. The heritabilities of these traits are low compared with
production and immune response traits (Table 2). Therefore, the genetic gain will be
slow depending on selection intensity.*?

Table 2
Heritabilities of health traits in cattle
Health Trait Heritability References
Disease Resistance
Clinical mastitis 0.02-0.04 Govignon-Gion et al,'*® 2016;
Koeck et al,'*® 2014
Subclinical mastitis 0.04-0.06 Narayana et al,’>° 2018
Johne disease 0.04-0.06 Brito et al,'" 2018;
Kirkpatrick & Lett,'> 2018
Lameness 0.01-0.09 Chapinal et al,’>* 2013;
Koeck et al,'* 2014
Bovine leukosis 0.08 Abdalla et al,’®* 2013
Bovine tuberculosis 0.10 Raphaka et al,”' 2018
Nematode infestation 0.06-0.23 Passafaro et al,’>> 2015
Immunocompetence
Cell-mediated immune response 0.18 Mallard et al,’>® 2018
Natural antibody 0.27-0.31 de Klerk et al,®> 2018
Specific antibody response 0.46 Emam et al,'>’ 2014
Cellular Traits
Percentage of CD4+ lymphocytes 0.46 Denholm et al,”> 2017
Percentage of CD8+ lymphocytes 0.41 Denholm et al,”® 2017
Percentages of monocytes 0.15 Denholm et al,”® 2017
Percentages of monocytes 0.42 Denholm et al,”® 2017
In vitro nitric oxide response of 0.78 Emam et al’®

bovine monocyte-derived
macrophages
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Additional challenges to the single-disease approach, as well as other approaches
to selecting for health, are introduced by the possibility of negative genetic correla-
tions in resistance to 2 pathogens, even those causing the same disease (eg, the
many diverse pathogens that cause bovine mastitis or pneumonia), or negative asso-
ciations between resistance to a pathogen and important production traits. Mahmoud
and colleagues*® investigated the genetic correlation between 9 calf and 14 cow path-
ogens/diseases. In addition to a strong favorable correlation between resistance to the
most common causal agents of mastitis (Escherichia coli and Staphylococcus aureus),
they also reported negative correlations between rotavirus and chorioptic scabies,
and between E coli and daily weight gain in calves.*® Rupp and colleagues?® reported
similar negative associations in relation to mastitis, somatic cell count, and immune
response traits. However, other studies have not shown these negative associa-
tions.**=% For example, breeding for enhanced immunity in cattle has not been asso-
ciated with any notable negative impact on production, growth, or reproduction.*’°
This lack of association may be caused by overall better health minimizing any de-
creases in feed intake caused by illness or beneficial shared genes that control arange
of fitness traits.

It is possible to define customized breeding programs to increase genetic resis-
tance to disease by combining epidemiologic data on the common pathogens in
any geographic location with the results of single-disease approaches. Bovine tuber-
culosis (bTB) is a significant threat to the cattle industry globally and a distressing
problem in the United Kingdom, where the carrier of the pathogen, badgers, are pro-
tected by law. Nonetheless, Raphaka and colleagues®' predicted that the risk of trans-
mission of bTB between the herd mates can be reduced by 50% in 6 generations by
selecting the top 25% of bTB-resistant sires (heritability of 0.1). Improving resistance
to subclinical mastitis by reducing the somatic cell score in dairy cows has been used
for decades. In addition, Scandinavian countries have been selecting for improved
resistance to clinical mastitis, and more recently this has been added in Canada
and the United States as other examples of the commercially available programs to
improve health in dairy cattle.?® In March 2016, Zoetis Inc introduced a Wellness Trait
Index (WT$) on their Bovine Clarifide Plus SNP chip into the United States as part of
their genomics program. The index includes genomic information on combined health
traits, including mastitis, retained placenta, metritis, displaced abomasum, ketosis,
lameness, and polled. In Canada, the Canadian Dairy Network offers a similar com-
bined health index.>? The limitation of these indices relates to the accuracy of disease
event recording and the low heritability of these traits. In 2018, the Semex Alliance
began to offer a genomics test for immunocompetence as part of their Elevate pro-
gram. Rather than being based on lowly heritable clinical scoring data, the genomics
test for immunity is based on direct measurements of the more highly heritable infor-
mation on both antibody-mediated and cell-mediated immune responses, which con-
trol responses to a wide range of bacterial and viral pathogens.

Improvement of immunocompetence (also known as overall immune responsive-
ness) is another approach to increase resistance against infectious diseases. The
rationale behind the immunocompetence approach is the beneficial direct link be-
tween the type and magnitude of an immune response with protection of the host.
This approach makes sense because the immune system is the body’s defense
against infectious disease and cancer. The idea of selection based on immune
response traits dates back to Biozzi and colleagues®® in 1972 and the mouse model
they generated. These mice are currently known as the ABH strain.>* Biozzi selected
these mice for many generations for increased antibody and decreased cellular re-
sponses to investigate the genetic regulation of susceptibility and resistance to
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infectious diseases. In livestock, the idea was first introduced in the late twentieth cen-
tury and continued research led to the first commercially available health index for
dairy cattle in 2013, based on their immunocompetence.® Improving the overall im-
mune responsiveness provides the opportunity for resistance to a broad range of
pathogens when heritable, well-balanced, and broad-based aspects of immunity
are contained within the selection index. Simultaneously, responses to vaccines
have been reported to improve, and, in ruminants, their colostrum contains higher
amounts of immunoglobulin (Ig) to protect their newborns.*®:6°° Cows classified as
having superior immunocompetence have a lower occurrence of various diseases,
such as mastitis, metritis, and pneumonia.® This finding is true both in research and
commercial application.>® Also, as mentioned earlier, this approach has not been
found to adversely affect production or reproductive traits of dairy cattle.%%:5”

The main challenge in the immunocompetence approach is to develop methods to
measure immune responses that can reflect the overall performance of this complex
system. The immune system is composed of an integrated network of innate and
adaptive immune responses. The antibody-mediated and cell-mediated immune re-
sponses are the effector mechanisms of the adaptive immune system. Measuring
serum antibody as the indicator of antibody-mediated immune response is accurate,
inexpensive, and technically simple. However, defining an index to measure antibody-
mediated and cell-mediated immune responses, as well as capture innate cellular re-
sponses, is much more challenging. The cell-mediated response can be evaluated by
measuring T-cell cytotoxicity, interferon-y, delayed-type hypersensitivity (DTH), or
other measures of T-cell effector functions.>®°° Although there are various methods
to capture these T-cell responses, they are generally not as simple, cost-effective,
or as accurate as measuring antibody. One of the advantages of measuring DTH is
that it involves a variety of important leukocyte populations (neutrophils, macro-
phages, dendritic cells, and natural killer cells) from the innate system, as well as T
and B lymphocytes from the adaptive immune system that are involved in mounting
the DTH response.®® Not surprisingly, the genetic control of this response is complex
and involves many genes on various chromosome. The results of genome-wide asso-
ciation studies of serum antibody and DTH responses in dairy cattle show the differ-
ences in the genetic control of these two responses. Two major QTLs on
chromosomes 21 and 23 are associated with antibody response to a type Il antigen,
whereas associations of SNPs with DTH are scattered over the entire bovine genome.
Both traits are under polygenic control, but the nature of that control differs. To date,
studies indicate that the heritability of antibody-mediated response is about 2-fold
larger than the heritability of DTH response in dairy Holsteins®® (see Table 2). This dif-
ference may simply be caused by the large number of leukocyte populations involved
in DTH or the difficulty of accurately measuring this response in vivo. Nonetheless, the
heritability estimates for both of these immune response traits are moderately high at
0.18 to 0.46, which is more than those for clinical scores of diseases. This difference is
partly caused by the immune system directly controlling host defense and disease
outcome, whereas clinical scores are an indirect indicator of the host response. For
this reason, in 1999 Wilkie and Mallard®’ proposed that heritable adaptive immune re-
sponses measured after exposure to carefully selected nonpathogenic antigens can
reflect general immunocompetence and be used in a selection index based on esti-
mated breeding values to improve animal health (Fig. 1). From a technical point of
view, this method is similar to a highly controlled experimental challenge because
the background response, the dose of antigen, and the time duration from exposure
to the test antigens to sample collection are fully controlled. Moreover, the added
benefit of this test method compared with an experimental disease challenge is that
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Innate
Response

Fig. 1. In 1999, Wilkie and Mallard®' proposed that the overall performance of the immune
system (phenotype [P]) is shaped by adaptive immune responses, including cell-mediated im-
mune responses and antibody-mediated immune responses. Because innate responses
initiate adaptive immune responses, adaptive immune responses can reflect the perfor-
mance of innate defenses. Furthermore, all of these responses are coded by immune
response genes in the host genome that can be influenced by the epigenome. (Adapted
from Wilkie B, Mallard B. Selection for high immune response: an alternative approach to
animal health maintenance? Vet Immunol Immunopathol. 1999;72(1-2):231-235. http://
www.ncbi.nlm.nih.gov/pubmed/10614513; with permission.)

there is no need for a containment facility because of the nonpathogenic characteris-
tics of the test antigens.®? These controlled factors result in high heritability of these
health traits (see Table 2).

Measuring innate host defense can be more challenging than adaptive immune re-
sponses because of their varied mechanisms of action, broad specificity, and
assorted tissue locations. Measuring innate cellular responses in vivo is very difficult,
except for some limited measures in birds (eg, measuring macrophage phagocytosis
using carbon clearance test).6>%4 In contrast, humoral innate responses, such as nat-
ural antibodies (NAbs), are simpler to measure, and their roles in disease resistance
have been well studied in ruminants. NAbs, produced mainly from B1 lymphocytes,
are present in the body before exposure to any foreign antigens and are classified
as one of the humoral innate responses.®® NAb provides one of the first barriers to
infection. Binding to the pathogen, activating the complement system, and facilitating
phagocytosis are the effector mechanisms that are mediated by NAb.%¢ Studies on the
genetic regulation of IgM and IgG NAbs have shown these as heritability traits in dairy
cattle (see Table 2). The genes that control specific adaptive antibody responses
versus NAD differ, indicating that these are distinct traits, each making unique contri-
butions to defense of the host.®%¢7

Reductionist models
As mentioned previously, disease pathogenesis is the outcome of a highly complex
set of interactions between host, pathogen, and environment. An alternative method
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to scrutinize these complex interactions is to simplify the main interaction network into
subsystems that can be examined in detail using in vitro methods. In any subsystems,
genetic control requires the contribution of a smaller number of genes. These genes
and their mechanisms of action can, in some cases, be studied in fully controlled
in vitro environments in which infectious dose and virulence of the pathogen are set
by the investigator.®® Therefore, the chance of detecting QTLs with smaller effects
or discovering causal mutations is higher than with other approaches. The other
advantage of the reductionist model is the smaller sample size needed for these types
of studies.®” The downside of using reductionist models to study the complexity of dis-
ease resistance is that focusing on a single subsystem in vitro might be misleading.
These in vitro models may not represent the in vivo condition, or their effect on the
in vivo system might be small. Therefore, the results of the reductionist models should
subsequently be evaluated on the in vivo outcome of host-pathogen-environment
interactions.

The reductionist concept to study the genetic control of disease resistance was first
introduced in 2009 by Ko and colleagues® and later was reviewed in a 2014 publica-
tion entitled “The Marriage of Quantitative Genetics and Cell Biology: A Novel
Screening Approach Reveals People Have Genetically Encoded Variation in Microtu-
bule Stability.”®® Dennis Ko and his colleagues have developed an in vitro model,
called high-throughput human in vitro susceptibility testing (Hi-HOST), to screen the
response of B lymphocytes followed by a genome-wide association study to investi-
gate host-pathogen interactions. Using the Hi-HOST model, in 2017 they discovered
an association between VAC14, a gene responsible in the metabolism of phosphoino-
sitide, and resistance to Salmonella enterica serovar Typhi.”® In 2018, an independent
study on an African population found the association of the same gene with bacter-
emia in children.”"”> These findings represent the potential of the reductionist
approach to reveal the genetics rules in resistance to infectious disease.

In dairy cows, the genetic regulation of blood leukocyte proportions was first re-
ported by Denholm and colleagues’® in 2017, who found the heritability of the percent-
age of cells from the myeloid and lymphoid lineage in bovine blood ranged from 0.18
to 0.81. However, the researchers did not find any significant associations between
these cellular proportions and the infectious diseases they examined.”® Emam and
colleagues’™ studied the effect of host genetics on the function of bovine
monocyte-derived macrophages (MDMs) in response to E coli and S aureus, using
a cellular immunogenomic approach in 2018. Using a highly controlled in vitro culture
system, they showed a pedigree-based heritability of 0.776 for in vitro nitric oxide pro-
duction by MDMs against E coli.”® The genome-wide association study on this cellular
trait revealed the association of 8 SNPs on chromosome 4, 5, 6, 9, and 27 describing
78% of the phenotypic variation.”®

Results from reductionist models should be confirmed using other experimental
systems. These confirmatory studies can be association studies in an independent
population or investigation using genome editing or other appropriate technologies.
Inducing disease resistance in ruminants using gene editing has previously been re-
ported. Resistance to S aureus in a transgenic cow expressing lysostaphin in epithelial
cells of the mammary gland is an example of this approach.”” At present, new tech-
nologies with high efficiency and accuracy in inserting, deleting, or substituting single
nucleotides are available. Clustered regularly interspaced short palindromic repeats—
associated protein 9 (CRISPR/Cas9) is a tool to edit a specific sequence of the
genome with single nucleotide accuracy. Some research groups have reported the
successful application of this method in cattle. However, the publications are yet to
come because of the long generation interval in cattle and the novelty of the
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technology.”® The reductionist models in conjunction with genome editing methods
will likely provide the foundation of genetically resistant ruminants in future.

EPIGENETIC CONTROL OF THE IMMUNE SYSTEM IN DOMESTICATED RUMINANTS

Epigenetics is defined as the control of gene expression by mechanisms that do not
change the underlying DNA sequence.”®®° The epigenome can be influenced by
environmental factors, including diet, stress, hormones, pathogens, toxins, and
drugs, resulting in both permanent and reversible changes to gene expression.
The epigenome encompasses all epigenetic modifications, including DNA methyl-
ation, histone modifications, and microRNA (miRNA) regulation, which are among
the major regulatory elements that dictate chromatin accessibility and gene tran-
scription. The immune system is dynamic and possesses the ability to respond to
infection and other stressors while also regulating its own response. Epigenetic mod-
ifications regulate gene expression, which drives adaptive and innate immune cell
phenotypes, establishing cell memory, cell polarization, and regulation of the im-
mune response.®’

DNA Methylation

The DNA methylome of the ruminant immune system is influenced by species,®? tissue
and immune cell types,®*°" disease state,®>°? stimulation,®® age,®* and physiologic
event.83.87:88.93.95°97 gy djes investigating the DNA methylation levels and profiles of
immune response genes have been performed on immune-associated tissues,®® spe-
cific immune cells,?>°7°° as well as other non-immune-related tissues®3-86:87:100 jn
domesticated ruminants species. Studies investigating DNA methylation and the im-
mune system have reported on both the methylation of individual cytokine genes®®9°
and the global DNA methylome.®® In cattle, CD4+ T-cell polarization depends on
expression and secretion of cytokine genes including IFNy and IL4. Expression and
secretion of cytokines by isolated CD4+ T cells showed decreased DNA methylation
at the promoter regions of IFNy and 1L4.9%°° In addition, differential DNA methylation
was observed at transcription factors GATA3 and RORC in alveolar macrophages of
cattle infected with Mycobacterium bovis.®® In agreement with this observation, exam-
ination of MHC-I revealed that DNA methylation of MHC-associated CpG islands are
associated with downregulation of MHC-1.%"

Differentially methylated regions (DMRs) have been identified in cattle using global
methylation analysis technologies on different types of immune cells, which are sum-
marized in Table 3.82:8594.97.98 Eygluation of global DNA methylation can reveal re-
gions of the genome that change in response to a treatment, or that change in a
tissue-specific manner. DMRs can differ depending on factors such as the tissue
type, comparison of treatments, environmental impacts, and infection. As such,
care must be taken when choosing the type of tissue or cell type isolated for DNA
methylation analysis. Furthermore, the time of sample collection could affect the pres-
ence of DNA methylation or intermediary DNA methylation.°> Age and diet are also
well-known factors that affect global DNA methylation and therefore
DMRs.88:90.91.94 Examination of global DNA methylation in non--immune-related tis-
sues showed an association between decreased DNA methylation at immune-
related genes, including TLR4, and increased chromatin accessibility and gene
expression in cattle that were fed high-concentrate diets compared with their counter-
parts that were fed a low-concentrate diet.°®> Overall DNA methylation is associated
with transcriptional regulation in ruminants and thus can influence immune cell pheno-
type and function.
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Table 3
Summary of global DNA methylation studies in dairy cattle
Number of

Cell Type Method Comparison DMRs References

CD4+ T Reduced- M bovis-infected 765 DMR Doherty
lymphocytes representation cattle vs infected vs et al,%®

bisulfite noninfected noninfected 2016
sequencing cattle cattle

Fibroblast Reduced- Difference between 14,094 DMR Korkmaz &

representation 5 mo and (5065 gene Kerr,%*
bisulfite 16 mo of age regions, 1117 2017
sequencing stimulated with promoters,
lipopolysaccharide 1057 gene
exons,
2891 gene
introns)

Peripheral Whole-genome High milk yield and 72 DMR high DeChow &
blood MeDIP-seq average vs average Liu,®”
mononuclear milk yield milk yield 2018
cell 252 DMR herd

environment
Alveolar Whole-genome M bovis-infected 0 DMR between  O’Doherty
macrophage bisulfite cattle infected and et al,®>
sequencing vs noninfected noninfected 2019
Blood cells Reduced- Creole cattle vs 334 DMR Sevane
representation Iberian breeds et al,®?
bisulfite 2019
sequencing

Abbreviation: MeDIP-seq, methylated DNA immunoprecipitation sequencing.

Histone Modifications

There are limited studies that report on histone modifications in domesticated rumi-
nants, especially in the context of the immune response. Genome-wide assessment
of the gene repressor marker, H3K27me3,°2 in bovine peripheral blood lymphocytes
identified that this epigenetic mark is predominantly found 2 kb upstream of transcrip-
tion start sites (TSSs) and in introns.'®® The presence of H3K27me3 at TSSs was
generally associated with transcriptional repression for most genes.'®® He and col-
leagues,'%* investigated the impact of S aureus on H3K27me3 levels in blood mono-
nuclear cells in cattle.’® Most H3K27me3 was found to be intergenic and 20 kb
upstream of TSSs, suggesting it is associated with regulatory factors outside the pro-
moter region, such as enhancers.'®* There was a negative correlation between
H3K27me3 and gene expression. In this case, the TSS was a key area of regulation
for genes that function in immune-related processes in innate and adaptive immune
responses when comparing cows with mastitis with healthy cows.'®* More research
is needed to better understand the regulatory role of histone modifications and the his-
tone code in bovine species and how they relate to immunity and immune function.

BOVINE COLOSTRUM AND MILK EXOSOMAL microRNAs

MicroRNAs are abundant in bovine colostrum and milk either free or enclosed within
exosomes.'%571%7 Notably, immune-related miRNAs are highly expressed in milk,
particularly in colostrum, suggesting they are crucial for mammary gland immune regu-
lation as well as promoting development of the calf gut mucosal immune system.'%®
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Studies from the Mallard laboratory assessed the bioactivity of bovine colostrum
and milk exosomes containing miRNA on gut health. Purified exosomes were noted
to have typical phenotypic features similar to those in other body fluids'®® based on
size (20-100 nm) and protein markers essential for their interaction with host
cells.”'%"" Fluorescently labeled exosomes cocultured with human intestinal epithe-
lial (Caco-2 cells) were taken up and visualized in the vicinity of the nucleus of cultured
cells at 2 and 24 hours.""" Furthermore, colostrum and milk exosomes cocultured with
Caco-2 cells were not only noncytotoxic but enhanced cell viability using methylthia-
zoletetrazolium (MTT) cell proliferation/viability assay. Although both colostrum and
milk seem to support Caco-2 cell viability for up to 72 hours, MTT activity was signif-
icantly (P<.0001) higher in cells cocultured with milk compared with those with colos-
trum. Furthermore, differences in Caco-2 cells’ metabolic activity cocultured with
exosomes from cows with different immune response phenotypes was observed.
Specifically, metabolic activity after coculture with colostrum and milk exosomes
from high immune response cows was significantly greater than those with low im-
mune response exosomes (P = .0198). Of note, classification of those cows as high
or low immune response was based on estimated breeding values using the patented
High Immune Response (HIR) technology. Viability of Caco-2 cells cocultured with
either colostrum or milk exosomes from high immune responder cows was signifi-
cantly greater (P<.0024 and P<.0048) than that of low responders at 72 hours. A similar
observation was reported in porcine milk exosomes.''?

High-throughput next-generation sequencing of milk exosomal miRNA from
average immune responder cows identified 680 mature miRNAs."'° This study was
the first to profile bovine exosomal miRNA isolated by differential ultracentrifugation
and report their abundance compared with those identified in bovine milk exosomes
by microarray (n = 79'%%) and in porcine milk exosomes (n = 218,"* n = 491,""* and
n = 234""9). Similar to the aforementioned studies, immune-related miRNAs, such as
miR-148a, let-7 family, miR-21, and miR-26, were highly expressed in the study of
cows classified based on their immune response phenotypes.

Important immune-related miRNAs (including miR-148a, miR-155, miR-21, miR-
26a, and miR-29b) were also confirmed by quantitative reverse transcription polymer-
ase chain reaction in colostrum and milk exosomes with significantly (P<.05) higher
expression of miR-155 in colostrum compared with milk exosomes. Further, miR-
155, miR-21, miR-26a, and miR-29b were differentially expressed among high and
low immune responder cows.'°

GENE BY ENVIRONMENT EFFECTS ON REGULATION OF IMMUNOCOMPETENCE OF
DOMESTICATED RUMINANTS

The environmental component of host-pathogen-environment interactions that
dictate disease profiles is discussed next. This area of research is important and
topical because the changing climate is affecting livestock health and welfare directly
through increased environmental temperatures and drought’'® and indirectly through
ecosystem changes that alter the availability of feed resources and the distribution or
epidemiology of animal diseases.’'”'"® This article defines heat stress (HS) and resil-
ience to climate change and how these factors relate to immunocompetence in do-
mestic ruminants.

Because ruminants are endothermic homeotherms, they can maintain a physiologic
body temperature within a certain ambient thermal neutral zone through passive cool-
ing mechanisms (conduction, convection, and radiation).’'® However, when the sur-
rounding ambient temperature is greater than an animal’s thermal neutral zone, the
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animal must expend energy and mobilize body reserves to maintain euthermia through
active cooling (sweating and panting).’'®2% In general, cold ambient temperatures are
manageable through protective shelters, increasing body size, insulation, and the heat
generated through metabolism. 19120

Resilience can be defined as the ability of a species to survive and recover from a
perturbation.’®' Animals with greater resilience to HS are able to maintain euthermia
for longer through heat dissipation before becoming physiologically compro-
mised.' 81227124 Regjlience depends on multiple factors, including region (adapt-
ability), species, breed, sex, and productivity.’'”'"® For example, among cattle, an
increase in body temperature under HS was less pronounced in Brown Swiss
compared with Holstein cows, suggesting that Brown Swiss are more resilient.'2%126
Among dairy animals, goats were identified as the most adapted species to HS in
terms of production, reproduction, and disease resistance.'?”"'?® The question of
whether animals more resilient to climate HS can be identified within breed and
whether they are more resistant to disease is an area of emerging research.

The temperature-humidity index (THI) has been widely used as an indicator of HS in
livestock.'2%7131 THI is calculated by combining ambient temperature and humidity
(see Box 1)."32 Various THI HS thresholds have been estimated, depending on spe-
cies, breed, and region. For example, estimated THI thresholds for HS in Holstein
cows range from 60 (which could correspond with a temperature of 21°C and a relative
humidity of 62%; see Box 1 for calculation of THI) for Holsteins in Germany'® to 78 for
Holsteins in a US subtropical environment.'3* The THI threshold for HS is likely to be
higher for animals with lower production rates and for nonlactating animals.'®? Curtis
and colleagues'®® used rumen temperature and feed intake to estimate a THI HS
threshold of 75.5 for black angus feedlot cattle. Given these diverse ranges for THI
thresholds, it is important for studies in various geographic locations to determine
the relevant THI thresholds for each study.

Livestock are likely to experience days during the summer months when the THI ex-
ceeds their THI HS threshold. HS intensifies when the THI exceeds the threshold for
consecutive days because the animal has reduced opportunity to dissipate body
heat at night.’® As an example, analysis of climatic data from a temperate region in
southern Ontario, Canada, revealed that livestock frequently experience days, often
consecutively, on which the THI HS threshold was likely exceeded (Fig. 2).

Stress Responsiveness and Immunocompetence

The environment plays a key role in the nature and outcome of host-pathogen interac-
tions,’” and it is therefore important to improve understanding of how climate ex-
tremes affect animals’ responses to pathogens. Furthermore, climate change could
induce shifts in the spread and types of diseases to which livestock are exposed.''®
The health and welfare of animals as the climate changes will be dictated in part by
their resilience to extreme temperatures as well as their natural resilience to infections
agents. As such, it is desirable to select for animals with both enhanced ability to resist
disease*?55138.139 gnd superior resilience to HS.

There is evidence for favorable associations between disease resistance and stress
responsiveness in livestock.'?* Recently, Aleri and colleagues”® showed a favorable
and significant association between a preferred response to stress and above-
average immune competence in Holstein-Friesian and Holstein-Friesian x Jersey
heifers. For example, heifers with above-average immune competence had lower
serum cortisol concentrations compared with their below-average counterparts, sug-
gesting that they had enhanced ability to cope with management-induced stress.*°
Reduced cortisol production in response to stress is desirable because high
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Maximum ambient THI

60
o

T T T T T

May June July August September

Fig. 2. The THI calculated for the summer months (May to September) of 2018 at a
temperate region in southern Ontario, Canada. Suggested THI heat shock thresholds for
dairy cows are indicated. @ Estimated by Zimbelman and colleagues.'*? ® Estimated by Bri-
gemann and colleagues."** (Data from Zimbelman RB, Rhoads RP, Collier RJ, Duff GC. A re-
evaluation of the impact of temperature humidity index (THI) and black globe humidity in-
dex (BGHI) on milk production in high producing dairy cows. Proc Southwest Nurr Man
Conf. 2009;(January):158-169 and Brigemann K, Gernand E, von Borstel UU, Kénig S. Ge-
netic analyses of protein yield in dairy cows applying random regression models with
time-dependent and temperature x humidity-dependent covariates. J Dairy Sci. 2011.
https://doi.org/10.3168/jds.2010-4063.)

concentrations can suppress immune function and decrease the ability to cope with
stress.’0141 Because HS also results in increased serum cortisol concentra-
tions, 4214 it will be informative to investigate associations between immune compe-
tence and resilience to HS. For this reason, the Mallard laboratory is investigating the
connection between cattle classified based on estimated breeding values of immune
responsiveness and their response to HS. Preliminary results indicate substantial indi-
vidual variation in response to both in vivo and in vitro HS in Holsteins, as well as beef
cattle of mixed breeds. Knowledge of the genetic link between resilience to HS and
immunocompetence would provide scope for breeding animals that are more resilient
to HS and disease for a future with predictions for increased frequency and duration of
HS events and changes to the distribution or epidemiology of pathogens.

SUMMARY

Disease resistance has a complex phenotype because of the dynamic interaction be-
tween host, pathogen, and environment. Discovering the mechanisms of how the
genome shapes this phenotype is an exceptionally complex process with more than
5000 genes controlling host defense. Various strategies that have been used by re-
searchers are limited. Although new technologies and bioinformatic methods are
promising to collect and analyze much more complex data, the bottleneck of the
investigation seems to be at the starting point: how to accurately translate a biological
phenomenon (disease resistance) to a parsable data set. Recently, after decades of
researches on the genetic regulation of disease resistance, some technologies
became commercially available. However, these technologies are mainly based on as-
sociation studies and, in some cases, the heritabilities are very low. Therefore, the
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genetic gain might be limited because of the loss of association over generations or
the low heritabilities. Novel strategies and sources of data are required to deepen
the current study beyond association, free from study noise, to discover the causal
mechanisms with near-perfect heritability to overcome these limitations. Reductionist
models, structural variants, and epigenomic research are all examples of novel ap-
proaches and source data in an attempt to show the genetic blueprint of disease resis-
tance. It should also be noted that livestock production and health will likely face new
challenges with climate change. Emerging or remerging diseases, or the compro-
mised performance of the current traits under environmental stress, such as HS, are
just a few examples of the potential future challenges. All these factors warrant further
investigation to identify the genetic regulation of disease resistance to improve live-
stock health now, as well as to be prepared for future challenges.
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